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Monte Carlo computation of the free energy in quantum 
two-dimensional Heisenberg ferromagnets using the 
expanded-ensemble method 

T V Kuznetsova and P N Vorontsov-Velyaminov 
Scientific Research Institute of Physics, Si Petemburg University, 198904 SIary Peterhof, 
St Petemburg, Rusia 

W i v e d  22 April 1992, in final form I4 August 1992 

AbslracL n e  expanded-ensemble method, initially formulated for dassical systems, is 
combined with the Handscomb quantum Monte Carlo approach to develop a new method 
for the free-energy MC calculation of quantum systems It was applied to a quantum 
ZD Heisenberg fmmagnet ic  system and proved effective. Comparisons were performed 
between the nkahashi spin-wave approximation for free energy and our numerical results. 

1. Introduction 

In our previous paper (Favors@ a al 1992) we reported Monte Carlo (MC) simulations 
of a quantum two-dimensional (ZD) Heisenberg system with the ferromagnetic 
interaction of nearwt neighbours with the Hamiltonian 

3t = -25 Si . Sj . 
(ij l  

Such thermodynamic characteristics of the canonical ensemble as the internal 
energy, the zero-field susceptibility and the correlation functions were calculated using 
the Handscomb (1962, 1964) quantum MC (HQMC) method. The latter proved to be 
an effective tool for MC simulations of quantum systems. Still, both the Handscomb 
method in its conventional form and the other available quantum MC method (Suzuki 
1976) fail to deal with the simulation of such an important characteristic as the 
canonical ensemble free energy. 

We demonstrate in this paper the way that we have combined the HQMC method 
with an expandedensemble approach (Lubartsev et a1 1992) to produce a method for 
the numerical calculation of the free energy for a class of quantum systems previously 
open only to analytical approximations (lhkahashi 1986) or finite-system Hamiltonian 
diagonalizations. 

1.1. Erisling approaches to free-energy numerical simulation 

Over the last 20 years a number of methods have been developed aimed at MC 
calculation of the free energy for classical systems. The problem of such an estimation 
lies in the fact that the Gibbs factors (statistical weights) exp[-@X(q)] are normalized 
by the partition function Z itself. As a result, it is impossible to calculate Z within the 
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framework of any single canonical ensemble; there is no corresponding ‘microscopic’ 
MC variable to average. 

Some of the approaches taken to overcome this difficulty, such as the particle 
insertion method mdom 1%3), are unsuitable for a lattice system, classical or 
quantum. Some of the others, although formulated for classical systems, can be 
quite readily applied to Handscomb-inspired MC treatment of quantum Heisenberg 
systems. 

The multistage sampling method proposed by Valleau and Card (1972) calculates 
the free-energy differences (FEDS) between two canonical ensembles, provided that 
we know their energy distributions. In fact, we can obtain such distributions naturally 
in the course of &e Handscomb quantum Mc simulation of energy and susceptibility. 
Still, the weakest point of the approach remains the same as with the classical case, 
ie. the distributions in question must overlap at least partially. 

The approach closest to that used in our simulations is the acceptance ratio 
method of Bennett (1976). However, it involves, for a pair of ensembles, optimization 
over two parameters, while the expanded-ensemble method has only one parameter 
to optimize. 

In the expanded-ensemble concept proposed by Lubartsev el nl (1992) a set of 
inverse temperatures p,,, p, , . . . , PM ( p = J / k T )  is introduced. pu is zero, and the 
high-temperature limit is the usual reference point for the free-energy calculation. 
Then an expanded ensemble is composed of individual canonical ensembles at the 
inverse temperatures pi. The partition function of the composite ensemble is a sum 
over all the subensepbles: 

T VKumeLFovn and P N Vorontsov-Velyminov 

M 

z = Z(P;). cz) 
i d  

The MC procedure is then organized with two kinds o€ step involved: conventional 
steps over configurational space of a canonical ensemble at the inverse temperature 
pi (0 < i < M) and transitions between temperature points. 

Theoretically, this approach should have provided us with an opportunity to 
estimate. ensemble weight ratios p i / p k  by means of calculating the probability for 
a subensemble to occur during an MC run: 

where Ni and N k  are the numbers of occurrences for the ith and kth subensembles, 
respectively. 

P i / P k  = (3) 

On the other hand, 

P i / P k  = [z(pi)/zl/[z(pk)/zl* (4) 

z(PC)/z(pk)  = q [ P h F ( f l k )  -fliF(pi)I Q 

The partition functiei of the whole ensemble cancels out. 
Since 

knowledge of the occurrence ratios yields the FEDS between the subensembles at pi 
and pk. 

Note that from now on we shall call the free energy divided by the temperature, 
PF, and the e n p  divided by the temperature, PE,  the free energy and the energy, 
respeccively. Un,ess it is specified otherwise, all values describe the whole system. 

However attractive, a straightforward application of the outlincd scheme is 
unfiasible; the system will invariably rapidly collapse into the lowest-temperature 
(highest-weight) subensemble and will leave it extremely rarely. 
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In order to equalize the weights of the subensembles, the balancing factors exp(r),) 
were introduced by Lubartsev et a1 (1992). The partition function Z of the thus 
modified expanded ensemble takes the form 

2. J3xpanded-ensembIe method applied to quantum Heisenberg ferromagnets: 
Handscomb quantum Monte Carlo appmach 

The Handscomb quantum MC method developed by Handscomb (1962,1964), 
Lyklema (1982) and Favorsky et a1 (1992) made MC simulations of various quantum 
spin-; Heisenberg and king systems possible. According to the Hindscomb 
approach, sampling is performed in the space of permutation operator sequences 
C,,?-=O,1,2 ,... : 

c, = p,, . . . p,, . . .Pi, (8) 
where a permutation operator Pi, switches the spins occupying currently the sites 
connected by the ik bond. 

The expandedensemble approach combined with the Handscomb approach can 
be described best by writing a sum for the partition function of the canonical ensemble 
using MC variables: 

where p(  C,, p) is the non-normalized weight of the C, sequence: 

p ( C , , p )  = (P'/r!)Tr(C,) = ( T / T ! ) ~ ~ ( " ) .  (10) 
The permutation induced by the C,-sequence can be reduced to cycles 

independent of each other (Lyklema 1982); n ( c l )  is the current number of those 
cycles. The balaned weight pbd, of the C,-sequence will depend on which 
subensemble it belongs to: 

Pbdl = P(C,>Pi)exP(r)i). (11) 

21. MC procedure realization 

Mostly because of the computational resources available we have been using four- 
point sets {pi} .  They overlapped and covered the whole of our temperature range 
(from 40.0 to 0.5), although it is possible to treat all temperatures at once. Steps over 
'configurational' space (r-steps) were identical with those in the original Handscomb 
approach and their acceptance probability can be found elsewhere (Handscomb 1962, 
1964, Lyklema 1982, Favorsky et al 1992). 

Except for the finite-size effect study, we have used in the course of the simulations 
24x 24 systems with periodic bounday conditions. The MC chain lengths ranged from 
3ooo to loo00 MC steps per spin per temperature pint .  Error margins were estimated 
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in a conventional way: by dividing the whole run into ten or so bins and monitoring 
the difference between the overall and the bin averages. Actual error bars for the 
free energy and related variables will be presented in section 3, where the freeenergy 
results are presented and discussed. 
RI achieve a sufficient amount of fluctuatiorls in the r-space belween the 

attempted p-steps, the probability of initiating an r-step was chosen to be nine times 
that of the p-step. For the p-step acceptance probability T(p l  + p2), using the 
Handscomb expansion for the partition function in equation (9) and detailed balance 
principle, one can write 

T V Kuznefsma and P N Vorontsov-Ve&aminov 

T(P1 - 02) = “P(Pz + P , ) P t d C , , P , ) / P ( P l  - Pz)Pb.1(Cr,P1)1 

step. 

t w k  the form of the weights ratio 

(12) 
where p ( p i  pk) is the probability, when at the pi point, of initiating the Pi + Pk 

Since in our scheme all probabilities p ( p ,  - p k )  are equal, the acceptance ratio 

Pba,(CrrPZ)/Pb.,(CrrP1) = (Pz/Pd“P(vz - V I )  = ( w T l ) - r ~ P ( v z -  v1). 

(13) 
It is instructive to note here that -r in equation (13) is the ‘microscopic’ 

equivalent of energy in our Handscomb process: 

P(E) = - (T )  +@N. (14) 
We could have incorporated the PN-term into the acceptance ratio equation (13) 

and it would have led to changes in q,-values for the balanced ensemble but we chose 
to keep the formulae in the program simple and to ‘rescale’ the free energy to its 
conventional values later (see section 3.1). 

22 Balanciig fhe system 

We started with a more or less arbitrary set of { v i }  for a given set of {p i ) .  After 
a few trial runs we were usually able to adjust qi sufficiently to allow the system to 
visit all the temperature points repeatedly. Although at this stage the frequencies of 
Occurrence varied greatly (something like Ni/Nk = 0.01 for some subensembles), 
for the purposes of statistically representative free-energy estimations we fine-tuned 
the system to achieve at least Ni/Nk > 0.1 for all subensembles. 

23. Absolufe free-energv esfimafion 

It is clear that, with a method capable of calculating only FEDS, it is necassary to have 
a reference point that can be reached in the course of simulations. 

In the case of spin-; systems we know the freeenergy high-temperature limic 

where N is the number of spins in the system ( N  = 576). However, the power rather 
than the classical exponential dependence of the acceptance ratio (13) rules out the 
possibility of including the p = 0 point into our chain of overlapping {pi}  sets. 

It was our belief that the way to overcome the difficulty lay in extending the 
MC simulation into the high-temperature region and estimating the first few terms of 
the ’Bylor series for the entropy near the p = 0 point We used the finite-element 
method to do this. 

PF(0)  = -S(O) = -Nlog2 (15) 
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The ’microscopic’ equivalent of entropy differences can be easily found from the 
corresponding equations for the FEDS and the energy: 

Thus the entropy differences were estimated in our MC scheme together with the 
FEDS and the energy. 

Using T / J  = 40, 35 and 25 points for estimation we found that the difference 
between the entropy S(1/40) and its high-temperature limit S(0) appeared not to 
exceed a2%. So, after performing first-order corrections for the entropy, we went on 
to calculate the absolute free energy with a fair degree of assurance. 

S(Pd - S ( P d  = b-2) - (4 + 71 - 7 2  + I n ( W 4 ) .  (16) 

‘hbk 1. Absolute freeenergy simulation mults. 

Absolute free Absolute free 
energy - p F ,  energy - p F ,  

T I J  Mc simulations T/J MC simulations 
40.0 413 1.20 1090 
35.0 
30.0 
25.0 
22.0 
19.0 
16.0 
13.0 
10.0 
7.0 
6.0 
5.0 
4.0 
3.5 
3.0 
2 5  
23 
215 
20 
1.9 
1.8 
1.7 
1.6 
1.4 
1.35 
1.30 

415 1.15 1120 
418 1.10 1160 
422 1.05 1210 
425 1.00 1260 
430 0.95 1310 
436 0.93 1330 
445 0.915 1350 
4M) 0.9 1370 
489 0.866 1420 
505 0.833 1470 
530 0.8 1520 
sm 0.766 1580 
Mx) a733 1640 
630 a7 1710 
690 am 1760 
720 asis 130 
740 0.65 1830 
no 0.63 1890 
800 0.615 1930 
820 0.6 1970 
850 0.58 2040 
890 0.565 ZWO 
570 0.55 2140 

1003 0.53 22M 
1030 0.515 2280 

1.25 1060 a5 2350 

3. Freeenergy simulation results and discussion 

Absolute freeenergy simulation results are presented in table 1. The error margin 
is reflected in the number of significant digits left. In order to compare the results 
with the analytical theory low-temperature predictions for the free energy made by 
’Mahashi (1986), we must ‘rescale’ them to conform with Thkahashi’s choice of energy 
ground states value, the Hamiltonian pmkahashi 1986) being 

7f = - J C ( S ;  .SI - i ) .  (17) 
bi) 
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In figure 1 we have plotted the simulated free energy of per spin together with 
the theoretical curve 

Pf = -(T/4n J)[C(2)/6 + W3)/81. (18) 

Both were calculated for Ikahashi's choice of energy ground-state value and OUT 
coupling constant 

D-., 
I 

I 

0.2: m,.-.. 
='.,"..d ~ _,_..._. 

30 
I_ 

0 10 20 
T/J T/J 

F@m 1. Absolute free enezgy per spin rescaled F iym Z The mtemal energy of the system 
to the Takahashi moice of gmund-state energy 1, per spin: 0, directly simulated in the mu= of 
MC resulk ?he inset shows a mmparison of the an MC mn; t, calculated h m  Ihe FED using 
MC results (A) wilh the %TA (-) br the free the thermodynamic identity. The inset shows a 
energy. comparison of the MC RSUIU (U, +) wilh the nu 

(-) for the energy. Noic that the size of the 
experimental paints reflects the error bars only in 
the inset 

The discrepancies decrease from 20% for T/J = 0.9 to 13.5% for T / J  = 0.7 

We had several possible ways to account for these large disagreements. 

(1) There are possible faults and inaccuracies in our approach, such as sue effects 
or internal discrepancies within our results. 

(2) It is possible that the 'lhkahashi low-temperature approximation (nu) 
was still invalid in the range of temperatures studied. This supposition is partly 
supported by earlier simulations of forrelation lengths (Manousakis and Salvador 
1989) and susceptibility (Favorsky et a1 1992). The studies showed that, although the 
correlation lengths and susceptibility did exhibit for a certain range of temperatures 
the exponential dependence predicted by the TLTA (exp(b'/T) and exp(b/T), 
respectively), the b-coefficients differ considerably from the values obtained by 
lhkahashi. 

RI study the possible sizetemperature dependence of free energy, we performed 
simulations with lattices 40 x 40 and SO x M for the lower temperatures where finite- 
size effects should have been at their most dramatic The resulting WDS are presented 
in table 2 The error margin of this particular MC run was about 1.5%; so the numbers 
are reliable only up to the thud digit. The fourth digit was provided to show that 

and 9% for T /  J = 0.55. 
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lbbk 2 Finite-size mecis study. Note ihai in h e  lasi m l u m  we have listed the FEDS 
behueen T/J = 0.63 and T/J = 0.6. In the case of the 50 x M system we had 10 
insert lwo additional Lemperaiure points between 0.63 and 0.6 10 help wiih balancing. 

PED 
~~ 

Between TI2 = 0.63 
and TI J = 0.6 TI J = 0.665 TI J = 0.650 TI J = 0.630 TI J = 0.600 

24x 24 ( P F )  0 38.2 92 180 
24x 24 (Bf)  0 am 62 a m  0.3126 ai523 
4Qx 40 (PF) 0 106 255 K)o 

40x40(Bf) 0 0.W661 a m  0.3123 0.1.m 
50x50 ( P F )  - - 0 380 
M X S O f B f )  - - 0 aim 

~ ~ ~ 

the A(pf) results agree exceptionally well and do not display any size dependence 
at all. 

'R, prove the validity of our approach we have tested our results for self- 
consistency. Since the temperature points were situated close enough for us to 
calculate the inverse temperature derivatives d(Pf)/dp, we used the well known 
thermodynamical equation 

to find the internal energy of the ensemble for the entire temperature range. 
Although the free energy of an ensemble is obviously intrinsically related to the 

'microscopic' distribution of the ensemble's energy (Valleau and Card 1972), the 
internal energy and FELX have been estimated in the course of our MC sampling 
independently of each other. 'Ihe results of the application of equation (19) are 
presented in figure 2 They agree with the directly simulated energy within the error 
bars. In the temperature range below T /  J = 5 the error bars amount to 3% for 
both the calculated and the simulated energies. The increase in the relative error, 
which can be detected in the variance data in table 3, is explained by the fact that 
( T ) / N P  and d(Pf) /dp give us the energy ( E ) / N  plus a constant [see equation (14) 
and the last paragraph of section 21). The errors in both (.)lo and Pf decrease 
from 1.5% at T/J = 0.5 to 0.4% at T/J = 40.0, thus also reducing the absolute 
error in the energy (estimated before the constant is subtracted) but evidently not 
enough in our case to prevent the relative error in the energy from increasing to 5% 
for T /  J = 30.0. 

The "kahashi spin-wave low-temperature approximation for quantum ZD 
Heisenberg ferromagnets was one of the analytical theories that we compared our 
results with in our previous pper .  Unfortunately, the low-temperature energy formula 
that we used for comparison there was based on that in the work of Okabe and 
Kikuchi (1988). It was only after the original %!ahashi paper became available to us 
that we discovered an error which was obviously typographical in the Okabe-Kikuchi 
formula. The internal energy E / N  per spin calculated from Pf in equation (IS) and 
presented in the inset of figure 2 shows good agreement with the simulated energy 
only for lower temperatures (T < 0.7). "Mi agrees with the Ohbe-Kikuchi MC 
simulation results for the Same system: their energy results began to agree with those 
of "kahashi only from T /  J N 0.5. 

After considering the obselvations mentioned above, together with the fact that 
discrepancies between our numerical simulations and the TLTA appear to decrease 
with increasing temperature, we came to the conclusion that the approximation, when 

d(Pf)/W = E / N  (19) 
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lkbk 3. Selfansistency lesting: mmparison with the n T A  

Energy calculated 

Using E D  DWCl HQMC Slalhlical 
TIJ EIN = W f ) / W  W I N  'KTA Valiance 

30.0 a052 a049 O M n  
25.0 0.060 0.060 0.003 
19.0 0.080 0078 a003 
16.0 0.094 a093 a004 

6.0 0.231 0.228 a007 
4.0 a317 0.319 am 
z.s a456 0.458 aws 
1.0 a77 0.77 aoz 

13.0 0.115 0.113 a005 
10.0 0.149 a143 0.0% 

1.7 0.62 a61 0.01 

0.95 0.79 0.79 0.8452 0.02 
a 9  0.82 0.81 0.8165 0.02 
as 0.85 a84 0.9040 0.03 
a 7  0.90 am 0.9276 a03 
abs 0.91 0.91 0.9381 a03 
0.6 0.93 a93 0.9477 0.03 
0.55 a95 a94 0.9564 a03 

applied to Heisenberg ZD quantum ferromagnets, describes the internal energy of the 
system better than the free energy; while the energy approximation is valid up to the 
temperature T/J = 0.7, the accuracy of the freeenergy approximation is still far 
from satisfactory, even for T/J = 0.55. 

4. Coflclusiofl 

The results of numerical simulations presented in this paper prove the effectiveness 
of combining the p expanded-ensemble method with the Handscomb quantum MC 
procedure for the simulation of the free energy of a 2~ quantum Heisenberg 
ferromagnet. Following the principles proposed in our scheme it should be easy 
to use the method outlined for other quantum Heisenberg-like systems. 
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